Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Neuroprotection by a selective oestrogen receptor {beta} agonist in a mouse model of global ischaemia

Carswell, Hilary and Macrae, I.M. and Gallagher, L. and Harrop, E. and Horsburgh, K.J. (2004) Neuroprotection by a selective oestrogen receptor {beta} agonist in a mouse model of global ischaemia. American Journal of Physiology - Heart and Circulatory Physiology, 287 (4). H1501-H1504. ISSN 0363-6135

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The present study employs selective estrogen receptor (ER) agonists to determine whether 17-estradiol-induced neuroprotection in global ischemia is receptor mediated and, if so, which subtype of receptor (ERα or ER) is predominantly responsible. Halothane-anesthetized female C57Bl/6J mice were ovariectomized, and osmotic minipumps containing ER agonist diarylpropiolnitrile (DPN) (8 mg·kg–1·day–1, n = 12) or vehicle (50% DMSO in 0.9% saline) (n = 9) or ERα agonist propyl pyrazole triol (PPT) (2 mg·kg–1·day–1, n = 13) or vehicle (50% DMSO in 0.9% saline) (n = 10) were implanted subcutaneously. One week later transient global ischemia was induced by bilateral carotid artery occlusion under halothane anesthesia, and the mice were perfusion fixed 72 h later. ER agonist DPN significantly reduced ischemic damage by 70% in the caudate nucleus and 55% in the CA1 region compared with vehicle controls (P < 0.05, Mann-Whitney U-statistic). In contrast, pretreatment with the ERα agonist PPT had no effect on the extent of neuronal damage compared with controls. The data indicate a significant estrogen receptor-mediated neuroprotection in a global cerebral ischemia model involving ER.