Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Two new paracetamol / dioxane solvates - a system exhibiting a reversible solid state phase transformation

Vrcelj, R.M. and Clark, Nathan I.B. and Kennedy, A.R. and Sheen, D.B. and Shepherd, E.E.A. and Sherwood, J.N. (2003) Two new paracetamol / dioxane solvates - a system exhibiting a reversible solid state phase transformation. Journal of Pharmaceutical Sciences, 92 (10). pp. 2069-2073. ISSN 0022-3549

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This work reports on the crystal structures of two dioxane solvates of paracetamol that are true polymorphs. The high temperature phase is an orthorhombic form, space group Pbca, Z = 8, a = 12.6078(3) î.., b = 12.1129(2) î.., c = 13.4138(3) î.., V = 2048.52(7) î..3, (at 295 K) and the low temperature form is monoclinic, space group P21/c, Z = 4, a = 12.325(6) î.., b = 11.965(4) î.., c = 13.384(6) î.., = 92.01°, V = 1972.6(14)î..3 (at 123 K). The structures of these polymorphs are described as is the interrelationship between the two structures. In addition to the structural interrelationship, it is shown that the two forms undergo a reversible phase transformation. Desolvation of either form generates the stable monoclinic phase of paracetamol.