Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Two new paracetamol / dioxane solvates - a system exhibiting a reversible solid state phase transformation

Vrcelj, R.M. and Clark, Nathan I.B. and Kennedy, A.R. and Sheen, D.B. and Shepherd, E.E.A. and Sherwood, J.N. (2003) Two new paracetamol / dioxane solvates - a system exhibiting a reversible solid state phase transformation. Journal of Pharmaceutical Sciences, 92 (10). pp. 2069-2073. ISSN 0022-3549

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This work reports on the crystal structures of two dioxane solvates of paracetamol that are true polymorphs. The high temperature phase is an orthorhombic form, space group Pbca, Z = 8, a = 12.6078(3) î.., b = 12.1129(2) î.., c = 13.4138(3) î.., V = 2048.52(7) î..3, (at 295 K) and the low temperature form is monoclinic, space group P21/c, Z = 4, a = 12.325(6) î.., b = 11.965(4) î.., c = 13.384(6) î.., = 92.01°, V = 1972.6(14)î..3 (at 123 K). The structures of these polymorphs are described as is the interrelationship between the two structures. In addition to the structural interrelationship, it is shown that the two forms undergo a reversible phase transformation. Desolvation of either form generates the stable monoclinic phase of paracetamol.