Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Polymorphism in 2-4-6 trinitrotoluene

Vrcelj, R.M. and Sherwood, J.N. and Kennedy, A.R. and Gallagher, Hugh Gerald and Gelbrich, T. (2003) Polymorphism in 2-4-6 trinitrotoluene. Crystal Growth and Design, 3 (6). pp. 1027-1032. ISSN 1528-7483

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Two crystal structures of 2-4-6 trinitrotoluene (TNT) are given, the monoclinic form (a0 ) 1.49113 (1) nm, b0 ) 0.60340 (1) nm, c0 ) 2.08815(3) nm, â ) 110.365 (1)°, V ) 1.76137 (4) nm3, space group ) P21/a, T ) 100 K) and the orthorhombic form (a0 ) 1.4910 (2) nm, b0 ) 0.6031 (2) nm, c0 ) 1.9680 (4) nm, V ) 1.7706 (7) nm3, space group ) Pca21, T ) 123 K). Of these two forms, the most stable is the monoclinic and the less stable is the orthorhombic form. These two polymorphs are shown to be orientational, rather than configurational in character. Due to their restricted molecular motifs, no strong hydrogen bonding exists and the crystalline form is dominated by van der Waals type forces. The two structures are shown to be closely related and an analysis of the two structures shows that they are effectively large scale polytypes. Calorimetric studies show that the two polymorphs are monotropic and that the enthalpy of transformation is very low, concurring with the similarity shown by the diffraction data and calculated lattice energies. The thermal expansion coefficients are defined, and it is shown that both polymorphs have similar thermal expansions.