Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Polymorphism in 2-4-6 trinitrotoluene

Vrcelj, R.M. and Sherwood, J.N. and Kennedy, A.R. and Gallagher, Hugh Gerald and Gelbrich, T. (2003) Polymorphism in 2-4-6 trinitrotoluene. Crystal Growth and Design, 3 (6). pp. 1027-1032. ISSN 1528-7483

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Two crystal structures of 2-4-6 trinitrotoluene (TNT) are given, the monoclinic form (a0 ) 1.49113 (1) nm, b0 ) 0.60340 (1) nm, c0 ) 2.08815(3) nm, â ) 110.365 (1)°, V ) 1.76137 (4) nm3, space group ) P21/a, T ) 100 K) and the orthorhombic form (a0 ) 1.4910 (2) nm, b0 ) 0.6031 (2) nm, c0 ) 1.9680 (4) nm, V ) 1.7706 (7) nm3, space group ) Pca21, T ) 123 K). Of these two forms, the most stable is the monoclinic and the less stable is the orthorhombic form. These two polymorphs are shown to be orientational, rather than configurational in character. Due to their restricted molecular motifs, no strong hydrogen bonding exists and the crystalline form is dominated by van der Waals type forces. The two structures are shown to be closely related and an analysis of the two structures shows that they are effectively large scale polytypes. Calorimetric studies show that the two polymorphs are monotropic and that the enthalpy of transformation is very low, concurring with the similarity shown by the diffraction data and calculated lattice energies. The thermal expansion coefficients are defined, and it is shown that both polymorphs have similar thermal expansions.