Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Released cells, breath analysis and in-mouth analysis in flavour research

Piggott, J.R. and Schaschke, C.J. (2001) Released cells, breath analysis and in-mouth analysis in flavour research. Biomolecular Engineering, 17 (3-4). pp. 129-136. ISSN 1389-0344

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The flavour of a food or beverage is not perceived in a single event, but rather as a series of events experienced as the food is consumed. Recent methods in flavour research have taken account of this, and techniques have been developed to study flavour release in model systems (release cells or simulated mouths) and from the mouth or nose of assessors, while consuming foods. However, while there is agreement on the need in some cases for hydration or artificial saliva in simulated mouths, other parameters must be optimised on a case-by-case basis. Individual variability may still be a problem in breath analysis, and further work is required to determine the extent to which there are real differences in volatile profiles. The techniques of release cells and breath analysis must now be applied to provide data, which will allow flavour release to be modelled.