Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The experimental gas-phase structures of 1,3,5-trisilylbenzene and hexasilylbenzene and the theoretical structures of all benzenes with three or more silyl substituents

Johnston, B. and Mitzel, N.W. and Rankin, D.W.H. and Robertson, H.E. and Rüdinger, C. and Schmidbaur, H. (2005) The experimental gas-phase structures of 1,3,5-trisilylbenzene and hexasilylbenzene and the theoretical structures of all benzenes with three or more silyl substituents. Dalton Transactions, 13. pp. 2292-2299. ISSN 1472-7773

[img]
Preview
PDF
303741.pdf - Final Published Version

Download (344kB) | Preview

Abstract

The structures of 1,3,5-trisilylbenzene and hexasilylbenzene in the gas phase have been determined by electron diffraction, and that of 1,3,5-trisilylbenzene by X-ray crystallography. The structures of three trisilylbenzene isomers, three tetrasilylbenzenes, pentasilylbenzene and hexasilylbenzene have been computed, ab initio and using Density Functional Theory, at levels up to MP2/6-31G*. The primary effect of silyl substituents is to narrow the ring angle at the substituted carbon atoms. Steric interactions between silyl groups on neighbouring carbon atoms lead first to displacement of these groups away from one another, and then to displacement out of the ring plane, with alternate groups moving to opposite sides of the ring. In the extreme example, hexasilylbenzene, the SiCCSi dihedral angle is 17.8(8)°.