Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Phospholipid chlorohydrins cause ATP depletion and toxicity in human myeloid cells

Dever, G. and Stewart, L.J. and Pitt, A.R. and Spickett, C.M. (2003) Phospholipid chlorohydrins cause ATP depletion and toxicity in human myeloid cells. FEBS Letters, 540 (1-3). pp. 245-250. ISSN 0014-5793

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Chlorohydrins of stearoyl-oleoyl phosphatidylcholine (SOPC), stearoyl-linoleoyl phosphatidylcholine, and stearoyl-arachidonyl phosphatidylcholine were incubated with cultured myeloid cells (111,60) for 24 h, and the cellular ATP level was measured using a bioluminescent assay. The chlorohydrins caused significant depletion of cellular ATP in the range 10100 muM. The ATP depletion by the phospholipid chlorohydrins was slightly less than that of 4-hydroxy-2-nonenal, but greater than that of hexanal, trans-2-nonenal, and autoxidised palmitoyl-arachidonoyl phosphatidylcholine. SOPC chlorohydrin was also found to cause loss of viability in U937 cells, and thus phospholipid chlorohydrins could contribute to the formation of a necrotic core in advanced atherosclerotic lesions.