Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Cysteine peptidases CPA and CPB are vital for autophagy and differentiation in Leishmania mexicana

Williams, R.A. and Tetley, L. and Mottram, J.C. and Coombs, G.H. (2006) Cysteine peptidases CPA and CPB are vital for autophagy and differentiation in Leishmania mexicana. Molecular Microbiology, 61. pp. 655-674. ISSN 0950-382X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In the past, ultrastructural investigations of Leishmania mexicana amastigotes revealed structures that were tentatively identified as autophagosomes. This study has now provided definitive data that autophagy occurs in the parasite during differentiation both to metacyclic promastigotes and to amastigotes, autophagosomes being particularly numerous during metacyclic to amastigote form transformation. Moreover, the results demonstrate that inhibiting two major lysosomal cysteine peptidases (CPA and CPB) or removing their genes not only interferes with the autophagy pathway but also prevents metacyclogenesis and transformation to amastigotes, thus adding support to the hypothesis that autophagy is required for cell differentiation. The study suggests that L. mexicana CPA and CPB perform similar roles to the aspartic peptidase PEP4 and the serine peptidase PRB1 in Saccharomyces cerevisiae. The results also provide an explanation for why L. mexicana CPA/CPB-deficient mutants transform to amastigotes very poorly and lack virulence in macrophages and mice.