Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

PDGF-induced signaling in proliferating and differentiated vascular smooth muscle: effects of altered intracellular Ca2+ regulation

Egan, C. and Wainwright, C.L. and Wadsworth, R. and Nixon, G.F. (2005) PDGF-induced signaling in proliferating and differentiated vascular smooth muscle: effects of altered intracellular Ca2+ regulation. Cardiovascular Research, 67 (2). pp. 308-316. ISSN 0008-6363

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Objective: Platelet-derived growth factor-BB (PDGF)-induced intracellular signaling is involved in phenotypic modulation of vascular smooth muscle (VSM). This study has examined the PDGF-induced Ca2+ increase and the resultant effect on signaling pathways in proliferative compared with fully differentiated VSM. Methods: PDGF-induced changes in Ca2+ were measured in portal vein (PV) myocytes from 2–4-day-old (proliferating), compared to 6-week-old (differentiated), Sprague Dawley rats. Phospholipase C (PLC)g expression and activation of extracellular signal-regulated kinase (ERK) 1/2 was determined by immunoblotting or confocal immunolabelling. Activation of the Ca2+-dependent transcription factor, nuclear factor of activated T-cells (NFATc), was assessed by electromobility shift assay. Results: PDGF increased the intracellular Ca2+ concentration in differentiated, but not in proliferating, PV myocytes. This is probably due to very low expression of PLCg in proliferating PV. In 6-week-old PV, PDGF stimulation induced nuclear translocation and activation of NFATc. PDGF did not induce NFATc activation in neonatal PV. PDGF-induced ERK1/2 activation was observed in both 2–4-day-old and 6-week-old PV. In 6-week-old PV, ERK1/2 activation was Ca2+-dependent and protein kinase C-dependent. However in 2–4-day-old PV, PDGF-induced ERK1/2 activation was via a Ca2+-independent, atypical protein kinase C. PLCg expression was also decreased in the neointima, compared to media, of balloon-injured rabbit subclavian arteries. Conclusions: The regulation of PDGF-induced Ca2+ increases by PLCg expression in VSM may provide a mechanism for coordinating different signaling pathways leading to activation of specific transcription factors. This may play an important role in the phenotypic modulation of VSM.

Item type: Article
ID code: 10498
Keywords: calcium (cellular), signal transduction, MAP kinase, smooth muscle, Pharmacy and materia medica, Physiology, Cardiology and Cardiovascular Medicine, Physiology (medical)
Subjects: Medicine > Pharmacy and materia medica
Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences
Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences > Physiology and Pharmacology
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 24 Jun 2011 13:49
    Last modified: 24 Nov 2014 10:41
    URI: http://strathprints.strath.ac.uk/id/eprint/10498

    Actions (login required)

    View Item