Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

PDGF-induced signaling in proliferating and differentiated vascular smooth muscle: effects of altered intracellular Ca2+ regulation

Egan, C. and Wainwright, C.L. and Wadsworth, R. and Nixon, G.F. (2005) PDGF-induced signaling in proliferating and differentiated vascular smooth muscle: effects of altered intracellular Ca2+ regulation. Cardiovascular Research, 67 (2). pp. 308-316. ISSN 0008-6363

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Objective: Platelet-derived growth factor-BB (PDGF)-induced intracellular signaling is involved in phenotypic modulation of vascular smooth muscle (VSM). This study has examined the PDGF-induced Ca2+ increase and the resultant effect on signaling pathways in proliferative compared with fully differentiated VSM. Methods: PDGF-induced changes in Ca2+ were measured in portal vein (PV) myocytes from 2–4-day-old (proliferating), compared to 6-week-old (differentiated), Sprague Dawley rats. Phospholipase C (PLC)g expression and activation of extracellular signal-regulated kinase (ERK) 1/2 was determined by immunoblotting or confocal immunolabelling. Activation of the Ca2+-dependent transcription factor, nuclear factor of activated T-cells (NFATc), was assessed by electromobility shift assay. Results: PDGF increased the intracellular Ca2+ concentration in differentiated, but not in proliferating, PV myocytes. This is probably due to very low expression of PLCg in proliferating PV. In 6-week-old PV, PDGF stimulation induced nuclear translocation and activation of NFATc. PDGF did not induce NFATc activation in neonatal PV. PDGF-induced ERK1/2 activation was observed in both 2–4-day-old and 6-week-old PV. In 6-week-old PV, ERK1/2 activation was Ca2+-dependent and protein kinase C-dependent. However in 2–4-day-old PV, PDGF-induced ERK1/2 activation was via a Ca2+-independent, atypical protein kinase C. PLCg expression was also decreased in the neointima, compared to media, of balloon-injured rabbit subclavian arteries. Conclusions: The regulation of PDGF-induced Ca2+ increases by PLCg expression in VSM may provide a mechanism for coordinating different signaling pathways leading to activation of specific transcription factors. This may play an important role in the phenotypic modulation of VSM.