Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

PDGF-induced signaling in proliferating and differentiated vascular smooth muscle: effects of altered intracellular Ca2+ regulation

Egan, C. and Wainwright, C.L. and Wadsworth, R. and Nixon, G.F. (2005) PDGF-induced signaling in proliferating and differentiated vascular smooth muscle: effects of altered intracellular Ca2+ regulation. Cardiovascular Research, 67 (2). pp. 308-316. ISSN 0008-6363

Full text not available in this repository. (Request a copy from the Strathclyde author)


Objective: Platelet-derived growth factor-BB (PDGF)-induced intracellular signaling is involved in phenotypic modulation of vascular smooth muscle (VSM). This study has examined the PDGF-induced Ca2+ increase and the resultant effect on signaling pathways in proliferative compared with fully differentiated VSM. Methods: PDGF-induced changes in Ca2+ were measured in portal vein (PV) myocytes from 2–4-day-old (proliferating), compared to 6-week-old (differentiated), Sprague Dawley rats. Phospholipase C (PLC)g expression and activation of extracellular signal-regulated kinase (ERK) 1/2 was determined by immunoblotting or confocal immunolabelling. Activation of the Ca2+-dependent transcription factor, nuclear factor of activated T-cells (NFATc), was assessed by electromobility shift assay. Results: PDGF increased the intracellular Ca2+ concentration in differentiated, but not in proliferating, PV myocytes. This is probably due to very low expression of PLCg in proliferating PV. In 6-week-old PV, PDGF stimulation induced nuclear translocation and activation of NFATc. PDGF did not induce NFATc activation in neonatal PV. PDGF-induced ERK1/2 activation was observed in both 2–4-day-old and 6-week-old PV. In 6-week-old PV, ERK1/2 activation was Ca2+-dependent and protein kinase C-dependent. However in 2–4-day-old PV, PDGF-induced ERK1/2 activation was via a Ca2+-independent, atypical protein kinase C. PLCg expression was also decreased in the neointima, compared to media, of balloon-injured rabbit subclavian arteries. Conclusions: The regulation of PDGF-induced Ca2+ increases by PLCg expression in VSM may provide a mechanism for coordinating different signaling pathways leading to activation of specific transcription factors. This may play an important role in the phenotypic modulation of VSM.