Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Dissecting the components of the humoral immune response elicited by DNA vaccines

Garside, P. and Rush, C.M. and Mitchell, T.J. and Burke, B. (2006) Dissecting the components of the humoral immune response elicited by DNA vaccines. Vaccine, 24. pp. 776-784. ISSN 0264-410X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Although DNA vaccines appear to be efficient at inducing strong cellular immune responses, a number of questions remain regarding their ability to induce humoral immunity. The essential components for generating an antibody response include B and T cell recognition of antigen, subsequent activation, clonal expansion of each lymphocyte type and migration of T cells into B cell follicles to provide help, all leading to germinal centre formation and antibody production. We have employed a double adoptive transfer system based on ovalbumin (OVA)-specific CD4+ DO11.10 T cells and hen egg lysozyme (HEL)-specific MD4 B cells to assess all of these parameters in the context of DNA vaccination in vivo. We find that vaccination with DNA constructs expressing an OVA–HEL gene fusion (encoding contiguous T and B cell epitopes) can induce T cell activation, clonal expansion and migration into B cell follicles accompanied by B cell activation, blastogenesis, expansion and antibody production. These findings show that DNA vaccination can induce all of the components required for humoral immunity and also provide a system for in depth analysis of factors that influence the development of antibody responses. Such strategies may facilitate the rational design of vaccines capable of inducing effective humoral immunity.