Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

The effect of wet granulation on the erosion behaviour of an HPMC-lactose tablet, used as a rate-controlling component in a pulsatile drug delivery capsule formulation

McConville, Jason T and Ross, A. and Chambers, A.R. and Smith, G. and Florence, A.J. and Stevens, H. (2004) The effect of wet granulation on the erosion behaviour of an HPMC-lactose tablet, used as a rate-controlling component in a pulsatile drug delivery capsule formulation. European Journal of Pharmaceutics and Biopharmaceutics, 57 (3). pp. 541-549. ISSN 0939-6411

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The purpose of this study was to investigate the variability in the performance of a pulsatile capsule delivery system induced by wet granulation of an erodible HPMC tablet, used to seal the contents within an insoluble capsule body. Erodible tablets containing HPMC and lactose were prepared by direct compression (DC) and wet granulation (WG) techniques and used to seal the model drug propranolol inside an insoluble capsule body. Dissolution testing of capsules was performed. Physical characterisation of the tablets and powder blends used to form the tablets was undertaken using a range of experimental techniques. The wet granulations were also examined using the novel technique of microwave dielectric analysis (MDA). WG tablets eroded slower and produced longer lag-times than those prepared by DC, the greatest difference was observed with low concentrations of HPMC. No anomalous physical characteristics were detected with either the tablets or powder blends. MDA indicated water-dipole relaxation times of 2.9, 5.4 and 7.7×10−8 ms for 15, 24 and 30% HPMC concentrations, respectively, confirming that less free water was available for chain disentanglement at high concentrations. In conclusion, at low HPMC concentrations water mobility is at its greatest during the granulation process, such formulations are therefore more sensitive to processing techniques. Microwave dielectric analysis can be used to predict the degree of polymer spreading in an aqueous system, by determination of the water-dipole relaxation time.

Item type: Article
ID code: 10302
Keywords: microwave dielectric analysis, high shear granulation, erosion, HPMC, pulsatile delivery, lag-time, Pharmacy and materia medica
Subjects: Medicine > Pharmacy and materia medica
Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences
Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences > Pharmaceutical Sciences
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 24 Oct 2011 14:24
    Last modified: 06 Dec 2013 19:36
    URI: http://strathprints.strath.ac.uk/id/eprint/10302

    Actions (login required)

    View Item