Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Bead-based dna diagnostic assay for chlamydia using nanoparticle-mediated surface-enhanced resonance raman scattering detection within a lab-on-a-chip format

Monaghan, P.B. and McCarney, K.M. and Ricketts, Alastair and Littleford, R.E. and Docherty, F.T. and Smith, W.E. and Graham, D. and Cooper, J. (2007) Bead-based dna diagnostic assay for chlamydia using nanoparticle-mediated surface-enhanced resonance raman scattering detection within a lab-on-a-chip format. Analytical Chemistry, 79 (7). pp. 2844-2849. ISSN 0003-2700

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

There is a continued interest in the development of new on-chip protocols for the determination of the causes of infectious disease. In this paper, we demonstrate the use of surface-enhanced resonance Raman scattering (SERRS) for detecting the clinically relevant nucleic acid sequences of Chlamydia trachomatis in a bead-based lab-on-a-chip format, incorporating a solid-phase sample clean-up on-chip. The assay uses streptavidinated polymer microspheres to capture a biotinylated PCR product of the oligonucleotide sequence, which was subsequently hybridized against a complementary rhodamine-labeled, Raman active probe. Central to the assay is an in-channel integrated microfilter, which was used to retain the microspheres, enabling the bound target to be separated from the rest of the sample as part of a solid-phase clean-up (thereby removing any contributions from the background). After washing, the bound Rhodamine labeled detection probe was released thermally from the microspheres by heating and was subsequently mixed on-chip with a stream of silver nanoparticles. The signal was detected downstream using a Raman spectrometer to collect the SERRS response. The assay offers several advantages over traditional laboratory methods, including: the speed of the assay on-chip, the potential for sample clean-up; and the low volume of sample required.

Item type: Article
ID code: 10282
Keywords: micromachined filter-chamber, solid-phase extraction, total analysis systems, capillary-electrophoresis, microfluidic device, electrochromatography, integration, silver, SERRS, beds, surface-enhanced resonance raman scattering, Chemistry
Subjects: Science > Chemistry
Department: Faculty of Science > Pure and Applied Chemistry
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 11 Apr 2011 16:54
    Last modified: 16 Jul 2013 22:07
    URI: http://strathprints.strath.ac.uk/id/eprint/10282

    Actions (login required)

    View Item