Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Structural and theoretical insights into metal-scorpionate ligand complexes

Schwalbe, Matthias and Andrikopoulos, P.C. and Armstrong, David R. and Reglinski, J. and Spicer, M.D. (2007) Structural and theoretical insights into metal-scorpionate ligand complexes. European Journal of Inorganic Chemistry, 2007 (10). pp. 1351-1360. ISSN 1434-1948

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The syntheses of the complexes [M(TmMe)(CO)2(NO)] (M = Mo, W) by reaction of NOBF4 with [M(TmMe)(CO)3]– are reported and their spectroscopic characterisation and crystal structures are described. The analogous Cr complex could not be prepared by this methodology. The complexes adopt the expected pseudo-octahedral geometry. Complexes [M(L)(CO)2(NO)] (M = Cr, Mo, W; L = Cp, Tp and TmMe) together with the hypothetical [Mo(CO)2(NO)]+ cation were subjected to DFT calculations. Geometry-optimised structures closely parallel the crystallographic determinations and indicate that the complex [Cr(TmMe)(CO)2(NO)] is not inherently unstable. The DFT calculations allow the assignment of the C–O and N–O stretches in the IR spectrum and give insight into both the M–NO bonding and the metal to tripodal ligand bonding. The electron-donor strengths are confirmed to lie in the order TmMe > Tp > Cp. A side reaction of the B–H moiety of the TmMe anion with NO+ results in the isolation of the dimethylformamide adduct of (trismethimazolyl)borane, providing further evidence that the reaction pathways of the TmR ligands are more varied and less passive than in the chemistry of the nitrogen-based scorpionates.