Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Measurement of the d(36) coefficient of mercury cadmium telluride by reflection second harmonic generation

Wark, A.W. and Pugh, D. and Berlouis, L.E.A. and Cruickshank, F.R. and Brevet, P.F. (2001) Measurement of the d(36) coefficient of mercury cadmium telluride by reflection second harmonic generation. Journal of Applied Physics, 89 (1). pp. 306-310. ISSN 0021-8979

[img]
Preview
PDF (1.1330246)
1.1330246.pdf - Final Published Version

Download (231kB) | Preview

Abstract

The second order nonlinear coefficient (d36) of the narrow band gap semiconductor, mercury cadmium telluride (MCT), is measured. Because MCT is strongly absorbing at a 1.06 μm wavelength, the measurement was performed by comparing the second harmonic intensity reflected from the material surface to the second harmonic intensity measured for a quartz sample in transmission. The analysis depends on the derivation of comparable expressions for the reflected and transmitted intensities. Using this approach a value of d36=350±40 pm/V is obtained, a value much larger than those reported for similar zinc-blende type materials. The large magnitude of the MCT d36 is attributed to an electronic resonance enhancement.