Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Measurement of the d(36) coefficient of mercury cadmium telluride by reflection second harmonic generation

Wark, A.W. and Pugh, D. and Berlouis, L.E.A. and Cruickshank, F.R. and Brevet, P.F. (2001) Measurement of the d(36) coefficient of mercury cadmium telluride by reflection second harmonic generation. Journal of Applied Physics, 89 (1). pp. 306-310. ISSN 0021-8979

[img]
Preview
PDF (1.1330246)
1.1330246.pdf - Final Published Version

Download (231kB) | Preview

Abstract

The second order nonlinear coefficient (d36) of the narrow band gap semiconductor, mercury cadmium telluride (MCT), is measured. Because MCT is strongly absorbing at a 1.06 μm wavelength, the measurement was performed by comparing the second harmonic intensity reflected from the material surface to the second harmonic intensity measured for a quartz sample in transmission. The analysis depends on the derivation of comparable expressions for the reflected and transmitted intensities. Using this approach a value of d36=350±40 pm/V is obtained, a value much larger than those reported for similar zinc-blende type materials. The large magnitude of the MCT d36 is attributed to an electronic resonance enhancement.