Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Synthesis of mixed alkali-metal-zinc enolate complexes derived from 2,4,6-trimethylacetophenone: new inverse crown structures

Baillie, S.H. and Hevia, E. and Kennedy, A.R. and Mulvey, R.E. (2006) Synthesis of mixed alkali-metal-zinc enolate complexes derived from 2,4,6-trimethylacetophenone: new inverse crown structures. Organometallics, 26 (1). pp. 204-209. ISSN 0276-7333

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The solution and solid-state characterization of two new mixed alkali-metal−zinc enolate compounds is reported. These compounds are prepared by reaction of the relevant mixed-metal base [MZn(HMDS)3] (M = Na, K; HMDS = 1,1,1,3,3,3-hexamethyldisilazide) with a stoichiometric amount of the sterically demanding ketone 2,4,6-trimethylacetophenone. Thus, the new mixed-metal enolate compounds [Na2Zn2{OC(=CH2)Mes}6{OC(CH3)Mes}2] (2) and [K2Zn2{OC(=CH2)Mes}6(CH3Ph)2] (3) are obtained for M = Na, K, respectively. X-ray crystallographic studies reveal that both compounds adopt the same structural motif, which define them as inverse crown complexes, a cationic eight-membered [(MOZnO)2]2+ ring which hosts in its core two additional enolate ligands. Each Zn center is bonded to four anionic enolate ligands framing the structure, whereas the alkali metals form much weaker interactions with the oxygen atoms and complete their coodination sphere by bonding to a neutral molecule, an unenolised ketone for M = Na or toluene for M = K.