Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Fragmentation of carbohydrate anomeric alkoxyl radicals. A new synthesis of chiral 1-halo-1-iodo alditols

Gonzalez, C.C. and Kennedy, A.R. and Leon, E.I. and Riesco-Fagundo, C. and Suarez, E. (2003) Fragmentation of carbohydrate anomeric alkoxyl radicals. A new synthesis of chiral 1-halo-1-iodo alditols. Chemistry - A European Journal, 9 (23). pp. 5800-5809. ISSN 0947-6539

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Treatment of 1,2-fluorohydrins, 1,2-chlorohydrins, 1,2-bromohydrins, and 1,2-iodohydrins of the D-gluco, D-galacto, D-lacto, L-rhamno, D-allo, L-arabino, 3-deoxy-D-gluco, and 3,4-dideoxy-D-gluco families of carbohydrates with the (diacetoxyiodo)benzene/iodine system afforded 1-fluoro-1-iodo, 1-chloro-1-iodo, 1-bromo-1-iodo, and 1,1-diiodo alditols, respectively, in excellent yields. The reaction was achieved by radical fragmentation of the C1C2 bond, triggered by the initially formed anomeric alkoxy radical, and subsequent trapping of the C2-radical by iodine atoms. This methodology is compatible with the stability of the protective groups most frequently used in carbohydrate chemistry. The potential utility of these 1-halo-1-iodo alditols as chiral synthons was evaluated by their transformation into alk-1-enyl iodides and in the Takai E-olefination reaction.