Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Cephalexin: a channel hydrate

Kennedy, A.R. and Okoth, M.O. and Sheen, D.B. and Sherwood, J.N. and Teat, S.J. and Vrcelj, R.M. (2003) Cephalexin: a channel hydrate. Acta Crystallographica Section C: Crystal Structure Communications, 59 (11). o650-o652. ISSN 0108-2701

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The antibiotic cephalexin [systematic name: d-7-(2-amino-2-phenyl­acet­amido)-3-methyl-8-oxo-5-thia-1-aza­bi­cyclo­[4.2.0]oct-2-ene-2-carboxyl­ic acid] forms a range of isomorphic solvates, with the maximum hydration state of two water mol­ecules formed only at high relative humidities. The water content of the structure reported here (C16H17N3O4S·1.9H2O) falls just short of this configuration, having three independent cephalexin mol­ecules, one of which is disordered, and 5.72 observed water mol­ecules in the asymmetric unit. The facile nature of the cephalexin solvation/desolvation process is found to be facilitated by a complex channel structure, which allows free movement of solvent in the crystallographic a and b directions.