Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Cephalexin: a channel hydrate

Kennedy, A.R. and Okoth, M.O. and Sheen, D.B. and Sherwood, J.N. and Teat, S.J. and Vrcelj, R.M. (2003) Cephalexin: a channel hydrate. Acta Crystallographica Section C: Crystal Structure Communications, 59 (11). o650-o652. ISSN 0108-2701

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The antibiotic cephalexin [systematic name: d-7-(2-amino-2-phenyl­acet­amido)-3-methyl-8-oxo-5-thia-1-aza­bi­cyclo­[4.2.0]oct-2-ene-2-carboxyl­ic acid] forms a range of isomorphic solvates, with the maximum hydration state of two water mol­ecules formed only at high relative humidities. The water content of the structure reported here (C16H17N3O4S·1.9H2O) falls just short of this configuration, having three independent cephalexin mol­ecules, one of which is disordered, and 5.72 observed water mol­ecules in the asymmetric unit. The facile nature of the cephalexin solvation/desolvation process is found to be facilitated by a complex channel structure, which allows free movement of solvent in the crystallographic a and b directions.