Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Cephalexin: a channel hydrate

Kennedy, A.R. and Okoth, M.O. and Sheen, D.B. and Sherwood, J.N. and Teat, S.J. and Vrcelj, R.M. (2003) Cephalexin: a channel hydrate. Acta Crystallographica Section C: Crystal Structure Communications, 59 (11). o650-o652. ISSN 0108-2701

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The antibiotic cephalexin [systematic name: d-7-(2-amino-2-phenyl­acet­amido)-3-methyl-8-oxo-5-thia-1-aza­bi­cyclo­[4.2.0]oct-2-ene-2-carboxyl­ic acid] forms a range of isomorphic solvates, with the maximum hydration state of two water mol­ecules formed only at high relative humidities. The water content of the structure reported here (C16H17N3O4S·1.9H2O) falls just short of this configuration, having three independent cephalexin mol­ecules, one of which is disordered, and 5.72 observed water mol­ecules in the asymmetric unit. The facile nature of the cephalexin solvation/desolvation process is found to be facilitated by a complex channel structure, which allows free movement of solvent in the crystallographic a and b directions.