Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Synthesis and characterization of novel biodegradable aliphatic poly(ester amide)s containing cyclohexane units

Lecomte, Hélène A. and Liggat, J.J. and Curtis, Adam S.G. (2006) Synthesis and characterization of novel biodegradable aliphatic poly(ester amide)s containing cyclohexane units. Journal of Polymer Science Part A: Polymer Chemistry, 44 (6). pp. 1785-1795. ISSN 0887-624X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Polyesters provide a good basis to work on for designing novel biodegradable materials that are also mechanically and thermally resistant. In this study, a series of aliphatic poly(ester amide)s (PEA) based on cyclohexane units was synthesized. Block-copolymers of cyclohexyl sebacate and cyclohexyl sebacamide were produced by controlling the length of the ester block and the amount of amide during a two-step melt/interfacial polycondensation reaction. Films produced from these materials could retain their shape above 373 K due to the physical network of amide hydrogen-bonding. Thermal properties were also evaluated, with various melting and softening points obtained depending on the PEA composition. The determining factor for mechanical properties was the amount of amide introduced, with films containing up to 10 mol % amide showing the best handleability and flexibility. Tensile properties typical of an amorphous viscoelastic material were observed, but with much superior elongation to break achievable (1700%). These materials were also shown to be hydrolyzable, noncytotoxic, and favorable for cell attachment: they may therefore have a promising future in the area of medical devices or packaging, especially as their properties can be tuned by changing their composition.